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Abstract. Context. Identify code smells has occupied researcher mind all over
the world. Goal. In this paper we tackled this problem aiming to gather evi-
dence on software metrics use and the developers refactoring intention due the
presence of code smells. Method. We performed a controlled experiment with
the team of developers of a medium sized software system. Results. Our results
showed that although metrics can help developers, which metric is most use-
ful seems to be a personal choice. In addition, code smells may only affect the
refactoring decision of less experienced developers.

1. Introduction
A challenge for software engineers and programmers is to assure quality and main-
tainability for complex and large software systems [Sjoberg et al. 2013]. Such task of-
ten implies problems regarding communication, compatibility, and complexity issues
[Lanza et al. 2005]. Therefore, ensuring the maintainability of software systems is not
a trivial task, and improving this process is a continuous work of research in the software
maintainability area.

In general, while software evolves with a complex design, developers may intro-
duce design problems (e.g., code smells). Sometimes, these code smells can cause main-
tainability obstacles to be transposed on the pursuit of code quality goals, such as under-
standability and changeability [Fowler 1999]. In this sense, researchers had been tackling
such problems from different perspectives, either through (i) defining automatic strategy
for detecting code smells [Lanza et al. 2005, Marinescu 2004], (ii) trying to understand
how developers identify code smells [Santos et al. 2013], (iii) understanding software to
improve the maintainability based on code smells evaluations [Sjoberg et al. 2013], or
(iv) pursuing better ways to identify smells with metrics supporting develepers evaluation
[Guo et al. 2010].

In this context, we performed an empirical study to investigate how developers
identify code smells and to discuss the effectiveness of automatic code smells detection
tools, such as inCode and inFusion1. Section 2 describes the study settings. In this sense,
we enumerate the research questions guiding our study as follows.

1Both inCode and inFusion are available at: www.intooitus.com. We use InCode (v3.8). It takes
the source code and rely on Lanza et al. [Lanza et al. 2005] strategies of smells detection.



RQ1 Do developers converge with the automatic code smells identification?
RQ2 What strategies do developers use to find code smells in their software?
RQ3 Does the code smells identification imply in the developers intention of refactoring?

In summary, we used these questions to build the contributions (see Section 3)
of this paper as follows. We fostered the discussion (i) on the factors affecting the code
smell identification, (ii) on the developers reliance of software metrics in this process;
and (iii) on the drivers of the developers refactoring intention. We concluded the paper
by discussing the threats to validity (Section 4) and by answering the research questions
(Section 6).

2. Study Settings
In this section, we present the setting of our study. More specifically, we discuss (i)
the target system analyzed; (ii) the characterization of the subjects; (iii) the controlled
experiment design; and (iv) the code smells we addressed in the investigation.

2.1. SourceMiner Evolution

SourceMiner Evolution2 (SME) [Novais et al. 2013] is a software visualization tool that
provides support to software evolution tasks, aiming to ease software maintenance. It was
primarily implemented in Java as an Eclipse plugin in more than 20 KLOC. We choose
SME because of convenience, since we could easily access the developers and mainly
because it is not a trivial system and represent wide range of software systems.

Table 1 characterizes the SME tool by presenting software metrics values ad-
dressing different quality attributes, such as complexity, coupling and inheritance.
We chose these metrics because they are well known [Chidamber and Kemerer 1994,
Lanza et al. 2005], easy to understand and depict a wide view of our target system.

Table 1. Essential metrics values of SourceMiner Evolution.
Quality Attribute Metric Acronym Metric Name Value

Size

NOP Number of Packages 36
LOC Number of Lines of Code 23.878
NOC Number of Classes 296
NOM Number of Methods 1.730

2.2. Subjects Characterization

We called the seven SME developers to participate voluntarily. One developer did not
answer the call and another could not attend due to lack of schedule, all others attended.
Each developer worked on different parts of SME with eventual intersections. Those who
attended the call have different formal education: a Ph.D. student (Dev2); a M.Sc. student
(Dev1); and three undergraduate students (Devs 3, 4, and 5). Dev2 leads the project and
advised the three undergraduate students during their work. We refer to them as DevX
(X = [1..5]) for now on.

2.3. Experimental Design

We designed our (quasi-)experiment following Wohlin [Wohlin et al. 2012] guidelines.
First, we carried out a pilot study and then the experiment itself. The pilot study was

2Software developed at Software Engineering Lab (LES): www.les.dcc.ufba.br



carried out with two master students which did not know the SME source code in ad-
vance. They had different performances leading the pilot study to inconclusive results.
The pilot study took too long so that we calibrate the experiment task by reducing the
number of code smells instances analyzed by the participants. The study included two
code smells: God Class (when a class tends to concentrate functionality from several
unrelated classes, while at the same time increasing coupling in the system) and Data
Class (when the class is a "dumb" data holders, without complex functionality, but
which are usually heavily relied upon by other classes in the system) [Lanza et al. 2005].
These smells are easy to understand and wide used in the literature.

In the experiment itself, we split the subjects into ”trained” and ”under-training”
developers relying on the characterization form data. We considered trained those devel-
opers with a long-term training in code smells and with a large software industry experi-
ence working on projects performing different roles, such as Quality Assurance Analyst,
Project Manager, Requirements Analyst (Devs 1 and 2). The under-training developers
are still looking forward to achieve their Computer Science degree and started to program
back in high school (Devs 3, 4 and 5). These developers reported fewer than two years on
average of experience with development and differently from the trained developers, they
reported few knowledge about code smells and refactoring.

For the experiment we used inCode to provide classes with smells. We chose this
tool because it provide better support among the tools analyzed. Next, we elaborated the
list of classes (10 classes) submitted to the developers analysis by putting together classes
with and without code smells. We randomly selected the classes whithout any smell.
The task assigned to the developers was the inspection of SME and the fulfillment of the
questionnaire (discussed in details in the next Section) accordingly.

Additionally, we provided printed support material to all of them before the ex-
ecution of the experiment: the definition of the code smells addressed and the metrics
available to their use. We allowed them to keep the material during the experiment.
During the experiment, we provided the metrics values calculated by inCode and make
clear that its use were optional. We did not performed a formal training to avoid bias
[Santos et al. 2013]. The experiment itself consists of accomplish the assigned task of
fulfill an questionnaire about code smells in SME, which we describe next.

2.4. Applied Questionnaire

We considered different aspects to build the questionnaire used in our experiment aiming
to gather useful information to answer our research questions. More specifically, we
take into consideration: (i) the agreement with the inCode smells identification for each
class; (ii) the agreement between the developers groups regarding their own identification
of code smells; (iii) their intention to refactor the classes they pinpointed as containing
code smells; (iv) the grading of the severity of the code smells, accordingly with their own
criteria to match with the inCode values; (v) the developers opinion if metrics helped them
to perform the smells identification. To support replication, we provide the questionnaire
in http://goo.gl/TkDPUd.

The applied questionnaire consists of nine questions. We enumerated the ques-
tions as follows. (Q1) Does this class contain this smell? (Q2) How much does this class
seem a smell to you? (Q3) Would you refactor these classes? (Q4) If answered Yes in Q3,



grade this class according to the emergency of refactoring (order as you would refactor).
(Q5) Did you work in this class? (Q6) What drove you to your answer in Q1? (Q7) Did
metrics help you to judge the classification of each class? (Q7.a) Which metrics set was
useful to judge “Data Class”? (Q7.b) Which metrics set was useful to judge “God Class”?

3. Results
In this section we (i) describe the collected data and (ii) analyze the gathered information
through different viewpoints.

3.1. Collected Data
Table 2 shows developers judgement about the presence or absence of the code smells
addressed in our controlled experiment. For each developer there is three columns relating
developers and the classes analyzed: GC, DC and W. The GC and DC columns show
whether the developer identified the God Class and Data Class code smells for
each given class or not. The severity of the code smell setted by the developer fulfills
each cell. The W column shows whether the developer worked in that class during the
SME development or not. For example, Dev2 indicated the presence of God Class and
Data Class in the ProjectStatistic class with severities equals to one and ten,
respectively, and did not worked in the class. Dev5 and Dev4 did not point out the severity
of some code smells they identified during the experiment, which we represent with a
hyphen (-). The column O presents an oracle regarding the automatic analysis provided
by the inCode tool.

Additionally, Table 2 presents precision (p), recall (r) and f1-score of the devel-
opers’ judgements. Such metrics rely on the values of ”true positives (tp)” — when the
code smell assigned by the participant was also pointed out by inCode —, ”false positives
(fp)” — when the code smell assigned by the participant was not pointed out by inCode
—, and “false negative (fn)” — when inCode pointed out the code smell to the class but
the participant did not. In fact, while precision indicates the fraction of code smells cor-
rectly identified (tp/(tp + fp)), recall indicates the fraction of the existing occurrences
identified (tp/(tp+ fn)). Moreover, the f1-score is an harmonic mean between precision
and recall (2 ∗ p ∗ r/(p+ r)), i.e., as much as they get higher, the F1-score increases itself.

Table 2. Developers judgement on the code smells addressed and its respective
values of precision, recall and accuracy.

Classes O Dev1 Dev2 Dev3 Dev4 Dev5
GC DC W GC DC W GC DC W GC DC W GC DC W

TreeMapView GC (10) 4 (7) 4 (10) 4 (8) 4 (-) 4
PackagesFilter DC 4 (7) (9) (-) (-)
TreeMapModel GC 4 (10) 4 (8) 4 (9) 4 (-) 4

ConcernDiffModel (2) 4
CouplingLayoutView 4 (5) 4 4

ConcernFilterView GC (10) (7) (5) 4
CouplingModel GC (7) 4 (10) 4 (-) 4 (10) 4
ProjectStatistic DC (1) (10) (10) (10) (10)

PolimetricLayoutView (2) 4 4 4 4
InterfacesFilter DC (7) (9) (10)

Precision 1 # .57 1 .80 1 1 1 .75 1
Recall .50 0 1 .33 1 1 .75 1 .75 1

F1-score .67 # .73 .50 .89 1 .86 1 .75 1

O: inCode oracle; GC: God Class; DC: Data Class; W: Worked?

Table 3(a) shows another excerpt of the collected data: the developers intention
to refactor the classes analyzed in the experiment. The checked cells indicate that the



developer intends to refactor the class. The numbers inside the parentheses depict the
ordering of refactoring assigned by the developer. The (-) means that the Dev2 did not
inform the refactoring sequence. The questionnaire results for all questions is available in
http://goo.gl/TkDPUd.

Table 3. (a): Developers refactoring intention and (b): Metrics use ocurrences.
(a)

Classes Dev1 Dev2 Dev3 Dev4 Dev5

TreeMapView 4(1) 4(-) 4(1) 4(4) 4(1)
PackagesFilter 4(1) 4(4)
TreeMapModel 4(-) 4(3) 4(3) 4(2)

ConcernDiffModel 4(-)
CouplingLayoutView

ConcernFilterView 4(2) 4(-) 4(4)
CouplingModel 4(-) 4(2) 4(5) 4(3)
ProjectStatistic 4(5) 4(6) 4(5)

PolimetricLayoutView
InterfacesFilter 4(2) 4(6)

(b)
GC DC

LOC 3 -
WOC 2 1
CW 1 2
NOACCM - 4
NOPUBA - 1
CPFD 2 -
TCC 3 1

GC: God Class; DC: Data Class.

3.2. Data Analysis

The collected data built a rich set of information, from which we present a rationale
through this section. For instance, we discuss the data taking into consideration (i) the
profile and previous experience of the developers, (ii) the developers self-evaluation, and
(iii) the developers refactoring intention.

3.2.1. Developers Profile and Experience

The values of F1-score (Table 2) show that the under-training developers achieved closer
results to the oracle than the other group. In other words, developers with lower formal ed-
ucation level and less industry experience obtained more correct answers according to the
oracle (inCode). Similar experience produced similar beliefs [Passos et al. 2013], which
might influenced on the similar judgement. Thus, both groups might have developed
different beliefs from their work and academic environment, which may have positively
influenced the judgement of the under-training developers. We also believe that, in con-
trast with the developers of the under-training group, the trained developers have different
industry and academia experiences and such difference contributed to different beliefs,
which might have increased the disagreement inside the latter group.

Such different beliefs contributed to the heterogeneous strategies used by the de-
velopers to identify the code smells. While, some rely on the use of metrics, others prefer
code inspection, and there were also those who to mix both approaches. We found that
most developers resort on metrics, Dev1 was the exception. He is the most experient and
used source code inspection and his experience to assess code smells. In contrast, all the
others perform an intensive use of metrics. Developers 3, 4 and 5 pointed out the metrics
LOC and TCC as important to identifying God Class and developers 3 e 4 pointed out CW
as important to identify Data Class. Such metrics were the most cited among the develop-
ers. Despite developers reliance on the software metrics, Table 3(b) shows that the choice
of the metrics is personal, since developers reported different sets of metrics to assess
each code smell. The metrics reported were ”Lines of Code (LOC)”, ”Weighted Opera-
tion Count (WOC)”, ”Class Weight (CW)”, ”Number of Accessor Methods (NOACCM)”,
”Number of Public Attributes (NOPUBA)”, Capsules Providing Foreign Data (CPFD),
and ”Tight Capsule Cohesion (TCC)”.



3.2.2. Developers Self-Evaluation

Another finding in the experiment was about the self-evaluation. We identified that even
though the trained developers said they had a good level of knowledge about smells, the
under-training developers – whose claim otherwise – achieved better results. One possible
explanation to their lack of confidence is their low level of formal education.

By investigating the developers characterization data collected we reached a con-
sensus that under-training developers resort to the use of metrics to reinforce his judge-
ment about the code smells. The fact of the under-training developers lack of confidence
in their knowledge in code smells might have lead them to rely his judgement on metrics.
Moreover, such behavior guide them to higher agreement with the tool.

3.2.3. Refactoring Intention

Regarding the refactoring intention, we proceeded with individual analysis for each de-
veloper as follows. Dev1 intended to refactor only the classes pointed out as containing
code smells, which might imply that he only considered code smell an anomaly that may
be harmful to the system. Differently from Dev1, Dev2 intended to refactor mainly the
classes he identified a code smell which he attributed high severity. The only exception
was the ConcernDiffModel class, which he justifies its refactoring because he knows
the class presented too many problems in its evolution history.

Dev3 only intended to refactor the Data Classes with higher severity and all God
classes, excepting CouplingLayoutView. Although he assigned the same severity
for the god classes CouplingLayoutView and ConcernFilterView, he gave no
explanation why he would refactor only one of them. In fact, none of the developers
intend to refactor CouplingLayoutView. Dev4 decided to refactor all the classes
identified either with “God Class” or “Data Class”. Dev5 also intended to refactor all
classes that contain code smells.

It seems that code smells do not drive developers with higher experience to refac-
toring. Instead, they would apply refactoring in the pieces of code with defect reincidence
whether it contain a code smell or not. On the other hand, less experienced developers
seem clearly guided by the code smells identification. In fact, their lack of experience
might lead them to hold their judgement based on the existence of code smells instead of
actual defects or flaws.

4. Threats to Validity

Despite all the caution in controlled (quasi-)experiments, they still present threats to va-
lidity [Wohlin et al. 2012]. In this section we discuss those we identified during our study
as follows.

Conclusion validity. We believe the questionnaire was properly built to achieve
the expected answers to our research questions. For instance, it allow us to detect the
reliance of the unexperienced developers on the use of software metrics as support for
the classes assessment. Therefore, we tried to bypass such threat to conclusion validity
relying our analysis only in the information gathered with the subject’s answers.



Construct validity. Regarding the experiment planning we made an effort to min-
imize communication among the subjects aiming to reduce the interference among their
answers. In addition, we tried to include all the developers of the system analysed in order
to get a wide analysis of the system regarding the code smells from different perspectives.
Moreover, we clearly explained the process and introduced the support material – avail-
able during the experiment execution – to avoid misguidance of the subjects. In fact, we
elaborated a simple and direct questionnaire to ease the understanding of the assigned
task.

Internal validity. We only discuss data gathered with the questionnaire to assure
a causal relationship between the treatment and the result. Otherwise, other factors – un-
controlled and unmeasured – may influence in the analysis. Therefore, to avoid influence
from external factors (e.g. participants comunication) we choose to carry the question-
naire as a controlled (quasi-)experiment. Such decision allows us to draw more confident
conclusions, despite the fact we interviewed a small sample of developers.

External validity. Our study interviewed a small sample of developers what is the
biggest threat to the external validity. Therefore, we can not generalize our conclusions.
However, in the same time, the reinforced internal validity allows us to draw insights to
guide further investigations.

5. Related Work
Different work have already tackled the problem of code smells identification at source
code level [Lanza et al. 2005, Katzmarski and Koschke 2012, Santos et al. 2013]. For
instance, Lanza et al. [Lanza et al. 2005] proposed strategies to help the automa-
tion of such identification. Their strategies were implemented into the inCode tool,
which performs automatic identification of code smells. Katzmarski and Koschke
[Katzmarski and Koschke 2012] try to measure the agreement between developers and
different metrics. More specifically, the question addressed is whether program aspects
measured by software metrics can be used to determine program complexity from the
perspective of programmers. Santos et.al. [Santos et al. 2013] carried a controlled exper-
iment study on detection of the God Class code smell. They concluded that subjects
take different drivers to judge a whether a class is a God Class or not. Differently our
study focus on the agreement between the developers and the automatic detection with a
tool support.

6. Final Remarks and Future Work
We are aware of the threats to validity and we answer the research questions to foster the
discussion on the topic rather than make a generalizable claim. With regard to RQ1 we
found by the values of precision and recall that ”under-trainning” developers judgement
seems more likely to agree with the inCode automatic judgement. Instead of adopt a
systematic approach, it was the “experience” and “knowledge confidence on software
design and code harmfulness” that guided the “trained” developers. Such different factors
produce different strategies of inspection for each developer. Therefore, we prefer to
suggest further investigation concerning RQ2 since our study lack of evidence on this
matter, and whichever claim would be only researchers opinions. In addition, we noticed
that the presence of code smells only affect the less experienced developers refactoring
intention (RQ3).



By taking into consideration the evidence gathered we can draw some research
opportunities on the topic: (i) what factors influence the beliefs of developers? (ii) what
factors drive developers to refactoring? (iii) how much the developers’ previous knowl-
edge in the source code and their experience can help them to identify smells? (iv) how
researcher can discuss in-depth about developers’ beliefs on whether a code smell exists
or not; (v) replicate the experiment with a larger sample and other systems. Besides that,
there is also a need to discuss whether code smells reported are really a design problem
in the developers’ point of view.
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